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Abstract

Theoretical and computational methods to analyze and control the dynamic behav-

ior of complex systems under uncertainty were investigated. Compressive Polynomial

Chaos Expansions were used to circumvent the large-scale di�culties common in other

Polynomial Chaos expansions. In the area of Koopman and Dynamic Mode Decom-

position Analysis, stable and e�cient computational techniques were developed that

address a suite of problems, from Ergodic Quotient computations to complex turbulent

flow characterizations. This resulted in a Koopman mode theory that rigorously unifies

a number of seemingly distinct concepts advanced in fluid dynamics. Using the set-

ting of stochastic structured uncertainty, a purely input-output theory of systems with

time-varying stochastic parameters was developed. New mean-square stability tests

were discovered with two important features, computational complexity that scales

with number of uncertainties rather than with state dimension, and the ability to han-

dle correlated uncertainty. Distributed control design in large-scale stochastic networks

was studied. In the limit of large system size, surprising dimensionality dependencies

and phase transition phenomena were discovered in the optimal control design problem

itself.
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1 Summary

The original aim of this project was the development of a framework that accelerates the
computational investigation and control of complex physical models under uncertainty. The
underlying principle was not the development of a single methodology that is equally appli-
cable to any uncertain dynamical system. Such overarching methodologies, while general in
applicability, can always be shown to have deficiencies in certain examples. The underlying
principle was rather to build from the ground up, by using specific methods on certain classes
of problems, and develop abstractions and generalizations when appropriate. This bottoms-
up approach appears to be more natural and e↵ective in developing powerful methodologies
that are applicable to problems of interest to the scientific and engineering communities.
Significant progress has been made in four thrust areas. These are Compressive Polynomial
Chaos (CPC) Expansions, Koopman/Dynamic Mode Decomposition (DMD) techniques, dy-
namical Structured Stochastic Uncertainty, and phase transitions in large-scale stochastic
networks. A common feature of these results are new algorithms suitable for large-scale
problems.

Compressive Polynomial Chaos is a technique developed in the course of this project [1].
It is a novel computationally tractable technique for computing the coe�cients of polynomial
chaos expansions based on `1 and convex optimization. The approach can be applied to
problems with a large number of random variables and uses a modest number of Monte
Carlo simulations while avoiding model manipulations. This technique has also been applied
to stochastic model predictive control [2] where the computationally expensive step of cost
function evaluation was performed using the CPC expansion.

In the area of Koopman/DMD analysis, a theory was developed that describes a sense
in which DMD approximates the action of the Koopman operator on an appropriate Krylov
subspace. It was shown that Koopman mode theory unifies and provides a rigorous back-
ground for a number of di↵erent concepts that have been advanced in fluid mechanics [3, 4, 5],
including Global Mode Analysis, triple decomposition and Dynamic Mode Decomposition.
In addition, important relationships have been discovered between Koopman, DMD and
Fourier analyses. Using only data as snapshots of a vector-valued observable, it was shown
that DMD algorithms have several advantages over the Discrete Fourier Transform (DFT).
Variants of the Balanced POD algorithm have been developed that in one instance dramati-
cally reduce the required number of snapshots of the state, and in another uses the restriction
of the state to the controllable subspace which often has much smaller dimension in control
problems with limited actuation [6, 7, 8, 9, 10, 11].

In dynamical systems with structured stochastic uncertainty new necessary and su�cient
conditions for mean square stability have been obtained that are tractable for large-scale
systems. These conditions were obtained through the development of a purely input-output
theory of dynamic systems with structured stochastic perturbations [12]. The loss of mean
square stability has recently been shown to indicate the emergence of complex behavior in
networked dynamical systems, and these conditions are thus very relevant for apriori predic-
tions (i.e. pre-simulations) of the emergence of such behavior. These results include necessary
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and su�cient conditions for the physically important case of correlated uncertainties, which
has previously been unresolved.

Distributed control in stochastic networks is an area of intense current research. The
central question of performance limitations due to network structure was studied in the both
the general setting as well as the setting of vehicular formations and consensus-like dynamical
networks. For large-scale networks, asymptotic results that quantify the limits of achievable
performance were obtained [13, 14, 15]. In particular, a clear answer to the question of
why the so-called vehicular platoons problem is inherently di�cult for large systems was
obtained, in that it is spatially a one dimensional problem. These results made strong contact
with the problems of harmonic solids and order-disorder transitions in statistical mechanics.
This result is one of few in the distributed control literature that directly connect limits of
performance statements with network topology, a significant question in this field.
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